Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SumTools[Summation] - compute closed forms of definite and indefinite sums
SumTools[DefiniteSummation] - compute closed forms of definite sums
SumTools[IndefiniteSummation] - compute closed forms of indefinite sums
Calling Sequence
Summation(f, k)
Summation(f, k=m..n, parametric)
Summation(f, k=alpha)
Summation(f, expr)
DefiniteSummation(f, k=m..n, parametric)
DefiniteSummation(f, k=alpha)
DefiniteSummation(f, k=expr)
IndefiniteSummation(f, k)
Parameters
f
-
expression; specified summand
k
name; summation index
m, n
integers or expressions
parametric
(optional) literal name
alpha
RootOf expression
expr
expression not containing k
Description
The IndefiniteSummation(f, k) command computes a closed form of the indefinite sum of f with respect to k, that is, it finds a function such that .
The DefiniteSummation(f, k=m..n) command computes a closed form of the definite sum of over the specified range .
For notational convenience, there are two special cases:
- The DefiniteSummation(f, k=alpha) command, where alpha is a RootOf structure, computes the definite sum of over the index of the specified RootOf
- The DefiniteSummation(f, k=expr) command is used for function evaluation at a specified point. This is an equivalence of eval(f, k=expr).
The Summation(f, ...) command is the combination of DefiniteSummation and IndefiniteSummation commands.
For a specified summation problem give to Summation, there is a preprocess that classifies whether the summation is a definite or indefinite sum. It then calls either IndefiniteSummation or DefiniteSummation as appropriate.
If Summation, IndefiniteSummation, or DefiniteSummation fails to compute a closed form, the unevaluated sum returns.
Note: The sum routine recognizes various resummation methods and thus is able to give the 'correct' value for various classes of divergent sums. If the environment variable _EnvFormal is set to true, sum uses this technique.
If _EnvFormal is set to false, then Maple tries harder to determine whether the given definite sum is divergent and returns infinity, -infinity, or unevaluated in that case. Note that this may slow down the computation.
In that case, Maple also tries to recognize removable singularities in the summation interval.
By default, _EnvFormal is unassigned.
For more information, see sum,details.
Options
If the option parametric is specified for a definite sum, then a result is returned that is valid for all possible integer values of any parameters occurring in the summand or the summation bounds. In general, the result is expressed in terms of piecewise functions.
Examples
Two examples of indefinite sums.
Example 1.
Example 2.
Two examples of definite sums:
Parametric case discussions may be returned:
Warning, unable to determine if the summand is singular in the interval of summation; try to use assumptions or use the parametric option
If _EnvFormal is set to true, the Summation command returns the class for recognized divergent sums.
See Also
product, RootOf, sum, SumTools
Download Help Document