Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LerchPhi - general Lerch Phi function
Calling Sequence
LerchPhi(z, a, v)
Parameters
z
-
algebraic expression
a
v
Description
The Lerch Phi function is defined as follows:
This definition is valid for or . By analytic continuation, it is extended to the whole complex -plane for each value of and .
If and are positive integers, LerchPhi(z, a, v) has a branch cut in the -plane along the real axis to the right of , with a branch point at .
If is a non-positive integer, LerchPhi(z, a, v) is a rational function of with a pole of order at .
LerchPhi(1,a,v) = Zeta(0,a,v). If , it is also true that limit(LerchPhi(z,a,v),z=1) = Zeta(0,a,v). If , this limit does not exist.
If , LerchPhi(z, a, v) has an infinite singularity at each non-positive integer v.
If the coefficients of the series representation of a hypergeometric function are rational functions of the summation indices, then the hypergeometric function can be expressed as a linear sum of Lerch Phi functions.
If the parameters of the hypergeometric functions are rational, we can express the hypergeometric function as a linear sum of polylog functions.
Examples
See Also
hypergeom, polylog, Zeta
References
Erdelyi, A. Higher Transcendental Functions. McGraw-Hill, 1953.
Download Help Document