Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
polylog - general polylogarithm function
Calling Sequence
polylog(a, z)
Parameters
a
-
expression
z
Description
The polylogarithm of index a at the point z is defined by
if and by analytic continuation otherwise. The index a can be any complex number. If , the point is a singularity.
For all indices a, the point is a branch point for all branches, and in Maple, the branch cut is taken to be the interval (). For the branches other than the principal branch (which is given on the unit disk by the series above, and hence is analytic at 0), the point is also a branch point, and the branch cut is taken to be the negative real axis. The formula for a particular branch can be determined with the following rules:
Each time the branch cut () is crossed in the counterclockwise direction, subtract . Add this quantity if the branch cut is crossed in the clockwise direction.
Each time the branch cut () is crossed in the counterclockwise direction, add to each term in the current formula. Subtract this quantity if the branch cut is crossed in the clockwise direction.
For example, if one traverses a path which starts at , goes clockwise around , then counterclockwise around , then clockwise around again to return at , the formula for the branch of polylog thus obtained would be
where polylog(a, z) indicates the principal branch and means the principal branch of the logarithm.
Maple only evaluates the principal branch.
Maple's dilog function is related to polylog by the relation .
Examples
See Also
assume, combine/polylog, diff, dilog, evalf, expand, initialfunctions, RealRange
References
Lewin, L. Polylogarithms and Associated Functions. Amsterdam: North Holland, 1981.
Download Help Document