Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
linalg[rref] - reduced row echelon form
linalg[gaussjord] - a synonym for rref (Gauss-Jordan elimination)
Calling Sequence
gaussjord(A)
gaussjord(A, 'r')
gaussjord(A, 'r', 'd')
gaussjord(A, rmar)
Parameters
A
-
rectangular matrix
'r'
(optional) for returning the rank of A
'd'
(optional) for returning the determinant of A
rmar
(optional) non-negative integer
Description
Important: The linalg package has been deprecated. Use the superseding packages, LinearAlgebra and VectorCalculus, instead.
- For information on migrating linalg code to the new packages, see examples/LinearAlgebraMigration.
- For details related to the GaussianElimination and ReducedRowEchelonForm commands, see the LinearAlgebra[GaussianElimination] help page.
Elementary row operations are performed on A, an n by m matrix over a field, to reduce it to row echelon (Gauss-Jordan) form. At present, if the matrix contains floating-point or decimal numbers, then Gaussian elimination with partial pivoting is used where all arithmetic is done in floating-point at Digits precision. In this case, the matrix entries on input must all be numbers of type numeric or complex(numeric). Otherwise ordinary Gaussian elimination is used. At present, the matrix entries must be rationals or complex rationals or in general rational functions with these coefficients.
The resulting matrix is upper triangular with leading nonzero entries 1 . If the matrix contains integers only, then in general rational numbers will appear in the result. Likewise if the matrix contains polynomials, in general rational functions will appear in the result.
If an optional second parameter is specified, and it is a name, it is assigned the rank of A. The rank of A is the number of nonzero rows in the resulting matrix.
If an optional third parameter is also specified, and the rank of A = n, then it is assigned the determinant of .
If an optional second parameter is specified, and it is an integer, the elimination is terminated at this column position.
The global _GaussJordanPivotList will contain the pivots which are not provably nonzero with the current Normalizer. This may be used to facilitate changing the value of Normalizer so that the computation may be repeated without using pivots not previously known to be nonzero.
Examples
Warning, unable to find a provably non-zero pivot
See Also
Digits, Gaussjord, linalg(deprecated)[gausselim], linalg(deprecated)[hermite], linalg(deprecated)[rowspace], LinearAlgebra
Download Help Document