Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Gausselim - inert Gaussian elimination
Gaussjord - inert Gauss Jordan elimination
Calling Sequence
Gausselim(A) mod p
Gaussjord(A) mod p
Gausselim(A, 'r', 'd') mod p
Gaussjord(A, 'r', 'd') mod p
Parameters
A
-
Matrix
'r'
(optional) for returning the rank of A
'd'
(optional) for returning the determinant of A
'p'
an integer, the modulus
Description
The Gausselim and Gaussjord functions are placeholders for representing row echelon forms of the rectangular matrix A.
The commands Gausselim(A,...) mod p and Gassjord(A,...) mod p apply Gaussian elimination with row pivoting to A, a rectangular matrix over a finite ring of characteristic p. This includes finite fields, GF(p), the integers mod p, and GF(p^k) where elements of GF(p^k) are expressed as polynomials in RootOfs.
The result of the Gausselim command is a an upper triangular matrix B in row echelon form. The result of the Gaussjord command is also an upper triangular matrix B but in reduced row echelon form.
If an optional second parameter is specified, and it is a name, it is assigned the rank of the matrix A.
If A is an by matrix with and if an optional third parameter is also specified, and it is a name, it is assigned the determinant of the matrix A[1..m,1..m].
Examples
See Also
Det, Inverse, LinearAlgebra[GaussianElimination], LinearAlgebra[Modular], mod, Modular[RowReduce]
Download Help Document