Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SDMPolynom
Description
Sparse Distributed Multivariate Polynomial data structure is a dedicated data structure to represent polynomials. This data structure provides more efficient basic polynomial arithmetic than the generic sum. For example, the command a := SDMPolynom(x^3+5*x^2+11*x+15,x); creates the polynomial
This is a univariate polynomial in the variable x with integer coefficients.
Multivariate polynomials, and polynomials over other number rings and fields are constructed similarly. For example, a := SDMPolynom(x*y^3+sqrt(-1)*y+y/2,[x,y]); creates
This is a bivariate polynomial in the variables x and y whose coefficients involve the imaginary number , which is denoted by capital I in Maple.
The type function can be used to test for polynomials. For example the command type(a, SDMPolynom) tests whether the expression a is a polynomial in the variable x. For details, see type[SDMPolynom].
Polynomials in Maple are sorted in lexicographic order, that is, in descending power of the first indeterminate.
The remainder of this file contains a list of operations that are available for polynomials.
Utility Functions for Manipulating Polynomials
coeff
extract a coefficient of a polynomial
coeffs
construct a sequence of all the coefficients
degree
the degree of a polynomial
lcoeff
the leading coefficient
ldegree
the low degree of a polynomial
tcoeff
the trailing coefficient
indets
the indeterminate of a polynomial
Arithmetic Operations on Polynomials
All the arithmetic operations on polynomials are wrapped inside the constructor SDMPolynom.
+,-
addition and subtraction
*,^
multiplication and exponentiation
Prem
pseudo-remainder of two polynomials
Mathematical Operations on Polynomials
diff
differentiate a polynomial
subs
evaluate a polynomial
eval
Miscellaneous Polynomial Operations
norm
norm of a polynomial
maxnorm
maximum norm of a polynomial
map
mapping an operation on the coefficients of a polynomial
convert
converting Polynomials to a Sum of Products
Thread Safety
The SDMPolynom command is thread-safe as of Maple 15.
For more information on thread safety, see index/threadsafe.
Examples
See Also
convert, indets, polynomial, series, type, type[SDMPolynom]
Download Help Document