Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
type/series - series data structure
Calling Sequence
type(expr, series)
Parameters
expr
-
expression
Description
The function type/series returns true if the value of expr is Maple's series data structure, explained below.
The series data structure represents an expression as a truncated series in one specified indeterminate, expanded about a particular point. It is created by a call to the series function.
op(0, expr), with expr of type series, returns x-a where x denotes the ``series variable'' and a denotes the particular point of expansion. op(2*i-1, expr) returns the ith coefficient (a general expression) and op(2*i, expr) returns the corresponding integer exponent.
The exponents are ``word-size'' integers, in increasing order.
The representation is sparse; zero coefficients are not represented.
Usually, the final pair of operands in this data type are the special order symbol O(1) and the integer n which indicates the order of truncation. However, if the series is exact then there will be no order term, for example, the series expansion of a low-degree polynomial.
Formally, the coefficients of the series are such that
for some constants k1 and k2, for any , and as x approaches a. In other words, the coefficients may depend on x, but their growth must be less than polynomial in x. O(1) represents such a coefficient, rather than an arbitrary constant.
A zero series is immediately simplified to the integer zero.
Examples
See Also
op, series, taylor, type, type/laurent, type/taylor
Download Help Document