Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
gfun[gftypes] - describe available types of generating functions
Description
A generating function is an analytic encoding of numerical data. It is a formal power series which can be manipulated algebraically in ways which parallel the manipulation of the (often combinatorial) objects they represent. The gfun package recognizes several different ways to represent the information in a list l.
The following types of generating functions are accepted by the gfun package.
'ogf'
If type is (ordinary generating function), then the coefficients are the elements of l. For example, the which corresponds to the list, [1, 1, 2, 3, 5, 8], is .
'egf'
If type is (exponential generating function), then the ith coefficient is . For example, the which corresponds to to the list, [1, 1, 2, 3, 5, 8], is .
'revogf'
If type is , then the series is the reciprocal of the ordinary generating function.
'revegf'
If type is , then the series is the reciprocal of the exponential generating function.
'lgdogf'
If type is , then the series is the logarithmic derivative of the ordinary generating function.
'lgdegf'
If type is , then the series is the logarithmic derivative of the exponential generating function.
'Laplace'
If type is , then the ith coefficient is .
You can define types by creating a procedure gfun[`listtoseries/mytypeofgf`], which accepts a list and a variable as input, and yields a series in this variable. This series must be of type taylor. In particular, it cannot have negative exponents.
See Also
gfun, series
Download Help Document