Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
type/linear - check for linear functions
type/quadratic - check for quadratic functions
type/cubic - check for cubic functions
type/quartic - check for quartic functions
Calling Sequence
type(a, linear(v))
type(a, quadratic(v))
type(a, cubic(v))
type(a, quartic(v))
Parameters
a
-
expression
v
indeterminate or list or set of indeterminates
Description
Check if the expression a is linear (quadratic, cubic, or quartic) in the indeterminates v. If v is not specified, this is equivalent to the call type(a, linear(indets(a))) That is, a must be linear (quadratic, cubic, quartic) in all of its indeterminates.
The definition of linear in the indeterminates v is type(a, polynom(anything, v)) and (degree(a, v) = 1) where degree means ``total degree'' in the case of several variables. The definitions for quadratic, cubic and quartic are analogous with degree(a, v) = 2, 3, and 4 respectively.
Note, if you wish to also determine the coefficients, for example, test if a polynomial is of the form and pick off the coefficients a and b, it is NOT recommended that you use the type test followed by the coeff function. The coeff function requires that the polynomial is expanded (collected) in x, and the type test is only syntactic. It may return true and a value for a which is in fact mathematically 0. The ispoly function should be used instead.
Examples
See Also
degree, indets, ispoly, polynom, type, type[polynom]
Download Help Document