Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
sumtools[extended_gosper] - Gosper's algorithm for summation
Calling Sequence
extended_gosper(f, k)
extended_gosper(f, k=m..n)
extended_gosper(f, k, j)
Parameters
f
-
expression
k
name, summation variable
m, n
expressions, representing upper and lower summation bounds
j
integer
Description
This function is an implementation of an extension of Gosper's algorithm, and calculates a closed-form (upward) antidifference of a j-fold hypergeometric expression f whenever such an antidifference exists. In this case, the procedure can be used to calculate definite sums
whenever f does not depend on variables occurring in m and n.
An expression f is called a j-fold hypergeometric expression with respect to k if
is rational with respect to k. This is typically the case for ratios of products of rational functions, exponentials, factorials, binomial coefficients, and Pochhammer symbols that are rational-linear in their arguments. The implementation supports this type of input.
An expression g is called an upward antidifference of f if
An expression g is called j-fold upward antidifference of f if
If the second argument k is a name, and extended_gosper is invoked with two arguments, then extended_gosper returns the closed form (upward) antidifference of f with respect to k, if applicable.
If the second argument has the form then the definite sum
is determined if Gosper's algorithm applies.
If extended_gosper is invoked with three arguments then the third argument is taken as the integer j, and a j-fold upward antidifference of f is returned whenever it is a j-fold hypergeometric term.
If the result FAIL occurs, then the implementation has proved either that the input function f is no j-fold hypergeometric term, or that no j-fold hypergeometric antidifference exists.
The command with(sumtools,extended_gosper) allows the use of the abbreviated form of this command.
Examples
see (SIAM Review, 1994, Problem 94-2)
See Also
sumtools, sumtools[gosper], SumTools[Hypergeometric][ExtendedGosper]
Download Help Document