Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
stats[statplots, scatterplot] - Agglomerated Plot
Calling Sequence
stats[statplots, scatterplot](data, format=agglomerated[n, l], ..)
statplots[scatterplot](data, format=agglomerated[n, l], ..)
scatterplot(data, format=agglomerated[n, l], ..)
Parameters
data
-
statistical list(s)
n
number of points within the range determined by l
l
maximum length of one side of an agglomerated box
plotoptions
plot options
Description
Important: The stats package has been deprecated. Use the superseding package Statistics instead.
The function scatterplot with the format parameter format=agglomerated of the subpackage stats[statplots] organizes data clusters into classes.
This type of plot is often used by cartographers, or when there is a large number of data points involved. The idea is that it is not necessary to have the detail of each individual point in a plot. Closely grouped points are plotted instead as one box.
When n or more points occur within a cube with side length l those points are replaced by the tightest fitting box possible. The tightest fitting box in one-dimension will always be a line. In higher dimensions, rectangles or boxes may be plotted.
When or more points occur within the same cube described in the last paragraph, the box is emphasized by being plotted with thicker lines.
If n or l are zero, or unspecified, default values will be used. The default value of n is the cube root of the number of points, divided by the number of dimensions of the data (that is, number of statistical lists passed as parameters). The default value for l is one-tenth the range of the x-coordinate data.
Class data is converted to classmarks before generating the plot. Weighted data is accounted for. Missing data is ignored.
The command with(stats[statplots]) allows the use of the abbreviated form of this command.
Examples
1-D case
See Also
Statistics, Statistics,ScatterPlot, statplots(deprecated)[scatterplot], stats(deprecated)[data], stats(deprecated)[statplots]
Download Help Document