Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
inttrans[invmellin] - inverse Mellin transform
Calling Sequence
invmellin(expr, t, s)
Parameters
expr
-
expression, equation, or set of expressions or equations to be transformed
t
variable expr is transformed with respect to t
s
parameter of transform
ran
range for Re(t) (optional)
opt
option to run transform under (optional)
Description
The invmellin function computes the inverse Mellin transform (F(s)) of expr (f(t)), a linear transformation from defined by the contour integral:
In this integral, c is assumed to be real. Also note that Maple currently does not handle general contour integrals. The above contour integral definition is only used to provide the information below on properties of the inverse Mellin transform.
The function returned is defined only on the positive real axis.
There are multiple transforms for a given , corresponding to the cases where for various boundaries and . The range is specified by the parameter ran. This parameter is optional. If the range parameter is not given, it is assumed to be .
All constants are assumed to be complex unless otherwise specified.
The invmellin function attempts to simplify an expression according to a set of heuristics, and then to match the result against internal lookup tables of patterns. These tables are of expressions containing algebraic, Bessel, exponential, GAMMA, trigonometric, as well as other functions. The user can add their own functions to invmellin's lookup tables with the function addtable.
Other functions that can be transformed are linear combinations of products of integer powers of t; rational polynomials; terms of the form where ; some definite integrals of functions whose transforms are known; derivatives of functions whose transforms are known; convolutions of two functions and whose transforms are known; and functions of the form and with complex, and a positive integer where the transforms of and are known.
If the option opt is set to 'NO_INT', then the program will not resort to integration of the original problem if all other methods fail. This will increase the speed at which the transform will run.
invmellin recognizes the Dirac-delta (or unit-impulse) function as Dirac(t) and Heaviside's unit step function as Heaviside(t).
The command with(inttrans,invmellin) allows the use of the abbreviated form of this command.
Examples
Inversion of mellin
Adding to the table
General properties
Some simple functions
Specifying ranges
See Also
dsolve, inttrans, inttrans[addtable], inttrans[mellin]
Download Help Document