Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
FFT - compute fast Fourier transform
iFFT - compute inverse fast Fourier transform
Calling Sequence
FFT(m, x, y)
evalhf(FFT(m, var(x), var(y)))
iFFT(m, x, y)
evalhf(iFFT(m, var(x), var(y)))
Parameters
m
-
non-negative integer
x, y
arrays of floats indexed from 1 to 2^m
Description
Important: The FFT and iFFT functions have been deprecated. Use the superseding functions FourierTransform and InverseFourierTransform in the DiscreteTransforms package instead. These new functions can compute the fast Fourier transform for sequences of arbitrary length (not restricted to a power of 2).
The FFT(m,x,y) and iFFT(m,x,y) commands compute in place the fast Fourier transform and the inverse fast Fourier transform of a complex sequence of length .
The first argument m should be a non-negative integer and the second and third arguments x and y should be arrays of floats indexed from 1 to . The array x contains the real part of the complex sequence on input and contains the real part of the fast Fourier transform on output. The array y contains the imaginary part of the complex sequence on input and contains the imaginary part of the fast Fourier transform on output. Both procedures return 2^m, the number of points in the complex sequence.
These procedures may be invoked with evalhf, which uses the hardware floating-point number system.
Examples
Important: The FFT and iFFT functions have been deprecated. Use the superseding functions FourierTransform and InverseFourierTransform in the DiscreteTransforms package instead.
See Also
DiscreteTransforms, DiscreteTransforms[FourierTransform], int, inttrans[laplace], inttrans[mellin], Matlab[fft]
References
Oppenheim, Allan, V., and Schafer, Ronald W. Digital Signal Processing. New Jersey: Prentice-Hall, 1975. See Fig. 6.5, p. 332.
Download Help Document