Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
galois - compute the Galois group of an irreducible polynomial
Calling Sequence
galois(f)
galois(f, x)
Parameters
f
-
irreducible polynomial
x
name
Description
The galois command computes the Galois group of a polynomial f. The argument f must be an irreducible polynomial in x over Q --the field of rational numbers-- or over , where the ti's are variables.
The Galois group of a polynomial over , where is the field of complex numbers, can be computed with algcurves[monodromy](f, t, x, group).
For polynomials over Q, the maximum degree is 9. For polynomials over , the maximum degree in x is 8.
If f is a univariate polynomial, the argument x is optional.
The galois function returns an expression sequence of five elements:
1- A string giving the name of the Galois group using the notation of "The Transitive Groups of Degree up to Eleven" by G. Butler and J. McKay, Communications in Algebra, 11(8) 1983. For instance "8T24" stands for the twenty-fourth group in the list of degree 8 transitive groups.
2- A set of strings, each string giving a description for the group according to "On Transitive Permutation Groups" by J. H. Conway, A. Hulpke and J. McKay, London Mathematical Society Journal of Computation and Mathematics. See group[transnames] for more details.
3- A string indicating the parity of the group ("+" for even groups, "-" for odd groups).
4- The order of the group.
5- A set of generators in disjoint cycle notation. The generators are represented by strings.
Note that specialization of the parameters t1, t2, ... ,tn results in a group which is a subgroup of the original group. (See, for example, van der Wärden, Algebra I, 8.10.)
The set of generators can be used to build a permutation group with the permgroup command of the group package.
The function group[transgroup] returns information about transitive permutation groups.
The galois procedure is able to print out details of how the Galois group is computed. To see some of this information you must first type infolevel[galois]:=1; before calling galois. To see all of the details type infolevel[galois]:=2; before invoking galois.
Examples
See Also
GF, group, infolevel
Download Help Document