Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Mellin/Inverse Mellin Transforms (inttrans Package)
Introduction
The Mellin and Inverse Mellin transforms mellin and invmellin are part of the inttrans package. The Mellin transform is closely related to the Laplace and Fourier transforms and has applications in many areas, including:
digital data structures
probabilistic algorithms
asymptotics of Gamma-related functions
coefficients of Dirichlet series
asymptotic estimation of integral forms
asymptotic analysis of algorithms
communication theory
The Mellin transform, as a function of , of a function of , is defined by the integral
The Inverse Mellin transform is defined by the contour integral
for a function of .
Simple Examples
Here are a few examples of invmellin, the inverse Mellin transform, in action.
Try an assumption on a:
Try changing the range:
In the above, we see that the correct assumptions on parameters and the correct range must be specified for the inverse Mellin transform.
Continuing with another example:
Check to see that the Mellin transform of this is our original expression:
Further Examples
The following is an example of a Mellin transform which does not simplify:
We try taking the inverse Mellin transform of this, with the valid range, and check to see that we get the original function:
The mellin and invmellin functions can also handle the Whittaker functions:
Try some general formulae:
For more information, see the following help pages: Mellin, Inverse Mellin, inttrans package, Laplace transform, and Fourier transform.
Return to Index for Example Worksheets
Download Help Document