Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Introduction to GMP
Maple uses the GMP library to perform arbitrary-precision integer arithmetic. For more information about GMP, see ?gmp.
Arbitrary-precision integer arithmetic involves working with numbers that are too large to fit into hardware integers. In Maple, the greatest number that can be represented by hardware integer is given by
kernelopts(maximmediate);
Integers greater than the above are represented by software integers. Arithmetic for software integers requires special algorithms for large integer arithmetic. To illustrate exact arbitrary-precision integer arithmetic in Maple, consider the following examples.
Basic Integer Arithmetic
133!/2^31 + 141^41;
p := nextprime(%); # Find the smallest prime greater than the previous number
isprime(p);
igcd(p, 2*p); # Greatest common divisor of p and 2*p is p
Fermat's Little Theorem
Fermat's Little Theorem states "If p is prime and a is an integer, then a^p = a (mod p)"
Consider this Mersenne prime (that is, prime of the form 2^n-1), which is more than 600 digits long.
p := 2^2281-1:
Let a be a random integer between 2 and p-1.
a := rand(2..p-1)():
Verify the correctness of Fermat's Little Theorem.
evalb(a &^p mod p = a);
A Very Large Summation
This example demonstrates the improvement of Maple 9 with arbitrary-precision integer arithmetic with GMP. Maple 9 computes this summation 25 times faster than Maple 8 (tested on a Pentium 4 1.5 GHz)
S := add(1/k^2, k=1..100000):
You can verify that the above sum is computed correctly by using the knowledge that it asymptotically approaches Pi^2/6.
evalf(sqrt(6*S)); # This should be approximately Pi
Return to Index for Example Worksheets
Download Help Document