Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
evalc - symbolic evaluator over the complex field
Calling Sequence
evalc(expr)
Parameters
expr
-
any expression
Description
This evalc(expr) calling sequence is used to manipulate complex-valued expressions, such as , by attempting to split such expressions into their real and imaginary parts. Whenever possible, the output from evalc is put into the canonical form .
The fundamental assumption that evalc makes is that unknown variables represent real-valued quantities. Thus, for example, evalc(Re(a+I*b)) = a and evalc(Im(a+b)) = 0. Furthermore, evalc also assumes that an unknown function of a real variable is real valued.
The assume command can be used to override these default assumptions. For example, assume(u::complex) tells evalc that u is not necessarily real. Note also that some usages of the assume command implicitly imply real and others do not. For example assume(u<1) implies u is real but assume(v^2<1) and assume(abs(v)<1) do not imply that v is real.
The evalc command maps onto sets, lists, equations and relations. The evalc command applied to a complex series will be a series with each coefficient in the above canonical form.
When evalc encounters a function whose decomposition into real and imaginary parts is unknown to it (such as f(1+I) where f is not defined), it attempts to put the arguments in the above canonical form.
The standard functions Re, Im, abs, and conjugate are recognized by evalc, and when such functions are invoked from within a call to evalc they apply the assumptions outlined above. For example, evalc(abs(a+I*b)) = sqrt(a^2+b^2).
A complex-valued expression may be represented to evalc as polar(r,theta) where r is the modulus and theta is the argument of the expression.
For a complete list of the functions initially known to evalc, see evalc/functions.
Examples
Set an assumption on . An alternative way to set this assumption is with assume(-1<v,v<1), which implicitly assumes is real.
See Also
assume, evalc/functions, evalf, polar, Re
Download Help Document