Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
AIrreduc - inert absolute irreducibility function
Calling Sequence
AIrreduc(P)
AIrreduc(P, S)
Parameters
P
-
multivariate polynomial
S
(optional) set or list of prime integers
Description
The AIrreduc function is a placeholder for testing the absolute irreducibility of the polynomial P, that is irreducibility over an algebraic closure of its coefficient field. It is used in conjunction with evala.
The call evala(AIrreduc(P)) tests the absolute irreducibility of the polynomial P over the field of complex numbers. The polynomial P must have algebraic number coefficients in RootOf notation (see algnum).
A univariate polynomial is absolutely irreducible if and only if it is of degree 1.
The function AIrreduc looks for sufficient conditions of absolute reducibility or irreducibility. It returns true if the polynomial P is detected absolutely irreducible, false if it is detected absolutely reducible, FAIL otherwise.
In the case of nonrational coefficients, only trivial conditions are tested.
If the polynomial P has rational coefficients, an absolute irreducibility criterion is sought over the reduction of P modulo p, where p runs through a set of prime integers. If S is given, the primes in S are used. Otherwise, the first ten odd primes and the first five primes greater than the degree of P are chosen. Although the probability for P to be absolutely reducible in case of failure is not controlled, it is very likely that P can be factored.
Examples
The following polynomial is absolutely irreducible, but has been specially constructed to deceive the test. This example illustrates the usefulness of the optional argument.
See Also
AFactor, alias, evala, irreduc, Irreduc, RootOf
References
Ragot, Jean-Francois. "Probabilistic Absolute Irreducibility Test of Polynomials." In Proceedings of MEGA '98. 1998.
Download Help Document