Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
diffalg[equations] - return the defining characteristic set of a characterizable differential ideal
diffalg[inequations] - return the initials and separants of the defining characteristic set of a characterizable differential ideal
diffalg[rewrite_rules] - display the equations of a characterizable differential ideal using a special syntax
Calling Sequence
equations (J)
inequations (J)
rewrite_rules (J)
Parameters
J
-
characterizable differential ideal or a radical differential ideal
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
Characterizable and radical differential ideals are constructed by using the Rosenfeld_Groebner command. They are represented respectively by tables and list of tables.
A characterizable differential ideal is defined by a differential characteristic set.
The differential polynomials forming this characteristic set are accessed by equations. They are sorted by decreasing rank.
The inequations of a characterizable differential ideal consist of the factors of the initials and separants of the elements of its characteristic set.
If and are, respectively, the set of equations and inequations of the characterizable differential ideal J, then J is equal to the saturation differential ideal :. It corresponds to the differential system .
A differential polynomial belongs to the characterizable differential ideal J if and only if is reduced to 0 by via differential_sprem.
The function rewrite_rules displays the equations of a characterizable differential ideal J as rewrite rules with the following the syntax:
, where, of course, .
(see rank, initial)
The list is sorted decreasingly.
If J is a radical differential ideal given by a characteristic decomposition, that is, as a list of tables representing characterizable differential ideals, then the function is mapped on all its components.
The command with(diffalg,equations) allows the use of the abbreviated form of this command.
The command with(diffalg,inequations) allows the use of the abbreviated form of this command.
The command with(diffalg,rewrite_rules) allows the use of the abbreviated form of this command.
Examples
See Also
diffalg(deprecated), diffalg(deprecated)/differential_algebra, diffalg(deprecated)[differential_sprem], diffalg(deprecated)[Rosenfeld_Groebner], DifferentialAlgebra[Equations]
Download Help Document