Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
diffalg[delta_polynomial] - return the delta-polynomial generated by two differential polynomials
Calling Sequence
delta_polynomial (p, q, R)
Parameters
p, q
-
differential polynomials in R
R
differential polynomial ring
Description
Important: The diffalg package has been deprecated. Use the superseding package DifferentialAlgebra instead.
The delta_polynomial command returns the delta-polynomial of p and q, that is
where phi and psi are the derivation operators of least order such that phi (up) = psi (uq) where up and uq are the leaders of p and q.
The delta-polynomial is sometimes called the cross-derivative.
The differential polynomials p and q must not belong to the ground field of R. Their leaders must be derivatives of the same differential indeterminate but not be derivatives of each other. Otherwise, the delta-polynomial is not defined and delta_polynomial returns an error message.
Delta-polynomials are constructed when dealing with partial differential polynomials to obtain regular differential systems.
The command with(diffalg,delta_polynomial) allows the use of the abbreviated form of this command.
Examples
See Also
diffalg(deprecated), diffalg(deprecated)/differential_algebra, diffalg(deprecated)/differential_ring, diffalg(deprecated)[leader], DifferentialAlgebra[Tools][DeltaPolynomial]
Download Help Document