Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
stats[describe,kurtosis] - Moment Coefficient of Kurtosis
Calling Sequence
stats[describe, kurtosis](data)
stats[describe, kurtosis[Nconstraints]](data)
describe[kurtosis](data)
describe[kurtosis[Nconstraints]](data)
Parameters
data
-
statistical list
Nconstraint
(optional, default=0) Number of constraints, 1 for sample, 0 for full population
Description
Important: The stats package has been deprecated. Use the superseding package Statistics instead.
The function kurtosis of the subpackage stats[describe, ...] computes the moment coefficient of kurtosis of the given data. It is defined to be the fourth moment about the mean, divided by the fourth power of the standard deviation.
The kurtosis measures the degree to which a distribution is flat or peaked. For the normal distribution (mesokurtic), the kurtosis is 3. If the distribution has a flatter top (platykurtic), the kurtosis is less than 3. If the distribution has a high peak (leptokurtic), the kurtosis is greater than 3.
Classes are assumed to be represented by the class mark, for example 10..12 has the value 11. Missing data are ignored.
The definition of standard deviation varies according to whether it is computed for the whole population, or only for a sample. It follows then that the kurtosis also depends on this factor, which is controlled by the parameter Nconstraint. For more information on this, refer to describe[standarddeviation].
There are other possibilities for the definition of the kurtosis, as can be seen in various books on statistics.
The command with(stats[describe],kurtosis) allows the use of the abbreviated form of this command.
Examples
This data has a flatter distribution than the normal distribution.
This data has about the same flatness as the normal distribution.
This data is more sharply peaked that then normal distribution.
Note that these three examples have a symmetrical distribution. Their skewness is then equal to zero. They are not distinguishable from the normal distribution according to the skewness, but they are according to the kurtosis.
See Also
describe(deprecated)[moment], describe(deprecated)[skewness], describe(deprecated)[standarddeviation], describe(deprecated)[variance], Statistics, Statistics[Kurtosis], stats(deprecated)[data], transform(deprecated)[classmark]
Download Help Document