Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
compoly - determine a possible composition of a polynomial
Calling Sequence
compoly(r)
compoly(r, x)
compoly(r, {x, ... })
Parameters
r
-
polynomial
x
variable upon which the composition will be made
Description
The function compoly returns a pair , such that subs(x=q(x), p(x)) is equal to r, the input polynomial. If such a pair cannot be found, it returns FAIL. and are nonlinear polynomials and has a low-degree in x greater or equal to 1.
When compoly is called without additional arguments, it is equivalent to being called with a second argument which is indets(r). When the second argument is a set with more than one variable, then a multivariate composition is attempted. In this case, the result has the same form, but the second polynomial is multivariate, that is, , . For the multivariate case, the second polynomial, , may be of degree 1.
Note that the composition may not be unique. In particular, if , is a composition, then we can find another such that replacing by will also result in a valid composition. This non-determinacy is eliminated by selecting c and b such that the q polynomial has integer content 1 and its independent term is 0.
Examples
See Also
indets, polynomials, subs
Download Help Document