Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
combinat[vectoint] - index of vector in canonical ordering
combinat[inttovec] - vector referenced by integer in canonical ordering
Calling Sequence
vectoint(l)
inttovec(m, n)
Parameters
l
-
list of non-negative integers
m
non-negative integer
n
Description
These two functions provide a one-to-one correspondence between the non-negative integers and all vectors composed of n non-negative integers.
The one-to-one correspondence is defined as follows. View all vectors of n non-negative integers as exponent vectors on n variables. Therefore, for each vector, there is a corresponding monomial. Collect all such monomials and order them by increasing total degree. Resolve ties by ordering monomials of the same degree in lexicographic order. This gives a canonical ordering.
Given a vector l of n non-negative integers, the corresponding integer m is its index in this canonical ordering. The function vectoint(l) computes and returns this integer m.
Given a non-negative integer m, the corresponding vector l is the m^th vector in this canonical ordering of vectors of length n. The function inttovec(m, n) computes and returns this vector l.
Here is a sample canonical ordering where n is 3:
Vector
Number
Monomial
[0,0,0]
0
1
[1,0,0]
x
[0,1,0]
2
y
[0,0,1]
3
z
[2,0,0]
4
x^2
[1,1,0]
5
x*y
[1,0,1]
6
x*z
[0,2,0]
7
y^2
...
The command with(combinat,vectoint) allows the use of the abbreviated form of this command.
Examples
See Also
combinat[decodepart], combinat[encodepart]
Download Help Document