Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Frequency Domain System Identification
System identification deals with the problem of identifying a model to accurately describe the response of a physical system to some input. This worksheet uses a spring-mass-damper system to illustrate the problem where the structure of the model is known and the parameters of the model are to be identified.
Identifying the model parameters that best describe the physical system is accomplished by exciting the system with a realistic input signal. The resulting output is then converted to the frequency domain and the parameters are estimated using a least-squares approximation approach.
System Definition
Parameter Definition
Variable Definition
Model Definition
Signal Generation and Simulation
Discrete Fourier Transform Calculations
Model-Based Parameter Estimation
The parameters, variables, and equations that define the spring-mass-damper model are found in the following sections:
Name
Value
Units
Parameters
Mass of the object
Damping coefficient ()
Spring constant
Simulation time
Sampling time
Number of samples
Noise standard deviation
Description
Input Variables
Input force on the mass
Output Variables
Output position of the mass
Excitation Input
System Response
To excite the system, we apply a discrete chirp signal that sweeps the frequency spectrum from 0.01 Hz to 1 Hz over 50 seconds.
noise is added to reflect a realistic application.
The system response to can be obtained using the DynamicSystems[Simulate] command. The response can be seen in the following plot.
The results of converting the input, output and model signals to the frequency domain can be seen in the plots below. The Maple commands used to generated the Discrete Fourier Transform are found in the code edit region.
-
The Maple commands used to obtain the model-based parameter values are found in the following code edit region.
Using Maple's optimization routines, the parameter values that best describe the physical model were found to be:
The difference in parameter values between those measured and those obtained through the estimation process are shown below.
The plot below shows the frequency response of the measured and the estimated model.
Download Help Document