Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Wrightomega - Wright omega function
unwindK - unwinding number
Calling Sequence
Wrightomega(x)
unwindK(x)
The short form omega( x ) (or ) can be used by first issuing the command alias(omega=Wrightomega).
Parameters
x
-
algebraic expression
Description
The Wright omega function is a single-valued (but discontinuous) variant of the Lambert W function. It is defined by
The unwinding number is defined by
=
= .
The complete solution of is
The Wright omega function is discontinuous on the half-lines , which are called the "doubling line" and its "reflection", respectively.
The Maple solve command does not yet know about Wrightomega.
The asymptotic behavior of omega at complex infinity outside the strip bounded by the discontinuities is given by
Here denotes the principal branch of the logarithm, and the are constants known in terms of Stirling numbers: .
That expansion for omega is not valid for tending to in the strip between the doubling line and its reflection, where instead
but the asymptotic series holds otherwise for large z.
The Wright omega function is defined in terms of the Lambert W function, but that definition is not convenient for numerical computation for large arguments, because if z is moderately large (if IEEE floats are used, "moderately large" means about 800), then is very large and may overflow, whereas LambertW(exp(z)) is asymptotic to z. Direct computation is much more satisfactory than computation via LambertW.
The branching behavior of the Wright omega function is also much simpler than that of the Lambert W function, being single-valued. In fact, we have the following simple explanation of the branching behavior of the Lambert W function, in terms of the Wright omega function:
This relationship can be used to allow analytic continuation of LambertW in the (otherwise discrete) branch index.
To use the short form omega( x ) (which can also be written as ), first issue the command alias(omega=Wrightomega).
Examples
See Also
alias, initialfunctions, LambertW, Stirling1
References
Corless, R.M., and Jeffrey, D.J. "On the Wright omega function." In Proceedings of AISC '02 and Calculemus '02. Edited by Jacques Calmet, Belaid Benhamou, Olga Caprotti, Laurent Henocque, and Volker Sorge. Springer, 2002: 76-90.
Also available as ORCCA Technical Report TR-00-12, February 2000.
Download Help Document