Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SumTools[IndefiniteSum][Rational] - compute closed forms of indefinite sums of rational functions
Calling Sequence
Rational(f, k, options)
Parameters
f
-
rational function in k
k
name
options
(optional) equation of the form failpoints=true or failpoints=false
Description
The Rational(f, k) command computes a closed form of the indefinite sum of with respect to .
Rational functions are summed using Abramov's algorithm (see the References section). For the input rational function , the algorithm computes two rational functions and such that and the denominator of has minimal degree with respect to . The non-rational part, , is then expressed in terms of the digamma and polygamma functions.
If the option failpoints=true (or just failpoints for short) is specified, then the command returns a pair , where
is the closed form of the indefinite sum of w.r.t. ,
is a list containing the integer poles of , and
is a list containing the poles of and that are not poles of .
See SumTools[IndefiniteSum][Indefinite] for more detailed help.
Examples
The following expression is rationally summable.
Check the telescoping equation:
A non-rationally summable example.
Compute the fail points.
Indeed, is not defined at , and is not defined at .
See Also
SumTools[IndefiniteSum], SumTools[IndefiniteSum][Indefinite]
References
Abramov, S.A. "Indefinite sums of rational functions." Proceedings ISSAC'95, pp. 303-308. 1995.
Download Help Document