Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SumTools[Hypergeometric][KoepfGosper] - indefinite summation of j-fold hypergeometric terms
Calling Sequence
KoepfGosper(T, n)
Parameters
T
-
hypergeometric term in n
n
name; specifies summation index
Description
The KoepfGosper(T, n) command solves the problem of indefinite summation of j-fold hypergeometric terms, that is, for the input j-fold hypergeometric term T of n, it constructs a function which is a sum of hypergeometric terms of n such that , provided that such a exists. Otherwise, the function returns the error message ``no solution found''.
The parameter T is a j-fold hypergeometric term in n if is a rational function in n.
Examples
Note that T is not a hypergeometric term in n. Hence, Gosper's algorithm is not applicable to T.
See Also
SumTools[Hypergeometric], SumTools[Hypergeometric][Gosper], SumTools[Hypergeometric][KoepfZeilberger]
References
Koepf, W. "Algorithms for m-fold Hypergeometric Summation." Journal of Symbolic Computation. Vol. 20 No. 4. (1995): 399-417.
Koepf, W. Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, 1998.
Download Help Document