Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Subfields - compute subfields of an extension field
Calling Sequence
Subfields(f,deg,K,x)
Parameters
f
-
polynomial or set of polynomials
deg
positive integer
K
set of RootOfs
x
variable
Description
The Subfields function is a placeholder for representing a primitive description of an algebraic extension. It is used in conjunction with evala.
Let f be an irreducible polynomial in K[x]. If f contains only one variable then x need not be specified, otherwise both K and x must be specified. If the argument K is not specified then K is the smallest extension of the rationals such that the coefficients of f are in K. If K is specified then the field K contains the RootOfs in this set as well. Let L be the field extension of K given by one single root of f. So L is not the splitting field; L = K[x]/(f) = K(RootOf(f,x). The call evala(Subfields(f, deg, K, x)) computes the set of all subfields of L over K of degree deg. Each subfield is given by a single RootOf of degree deg.
A field K(R) where R is a RootOf is a subfield of L if and only if f has an irreducible factor g over K(R) such the degree of f equals the product of the degree of g and the degree of R.
If f is not a polynomial but a set of polynomials then this procedure computes those subfields that the elements of f have in common. Each of these polynomials must be irreducible over K, otherwise this procedure may not work correctly.
Examples
See Also
evala, RootOf
Download Help Document