Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Student[NumericalAnalysis][InterpolantRemainderTerm] - return the interpolating polynomial and remainder term from an interpolation structure
Calling Sequence
InterpolantRemainderTerm(p, opts)
Parameters
p
-
a POLYINTERP structure
opts
(optional) equations of the form keyword=value where keyword is one of errorboundvar, independentvar, showapproximatepoly, showremainder; options for returning the interpolant and remainder term
Description
The InterpolantRemainderTerm command returns the approximate polynomial and remainder term from a POLYINTERP structure.
The interpolant and remainder term are returned in an expression sequence of the form , , where is the interpolant and is the remainder term.
The POLYINTERP structure is created using the PolynomialInterpolation command or the CubicSpline command.
If the POLYINTERP structure p was created using the CubicSpline command then the InterpolantRemainderTerm command can only return the approximate polynomial and therefore showremainder must be set to false.
In order for the remainder term to exist, the POLYINTERP structure p must have an associated exact function that has been given.
Options
errorboundvar = name
The name to assign to the independent variable in the remainder term. By default, the errorboundvar given when the POLYINTERP structure was created is used.
independentvar = name
The name to assign to the independent variable in the approximated polynomial. By default, the independentvar given when the POLYINTERP structure was created is used.
showapproximatepoly = true or false
Whether to return the approximated polynomial. By default this is set to true.
showremainder = true or false
Whether to return the remainder term. By default, this is set to true.
Notes
The remainder term is also called an error term.
The interpolant is also called the approximating polynomial or interpolating polynomial.
Examples
See Also
Student[NumericalAnalysis], Student[NumericalAnalysis][ComputationOverview], Student[NumericalAnalysis][CubicSpline], Student[NumericalAnalysis][Interpolant], Student[NumericalAnalysis][PolynomialInterpolation], Student[NumericalAnalysis][RemainderTerm], Student[NumericalAnalysis][UpperBoundOfRemainderTerm]
Download Help Document