Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Student[Calculus1][CriticalPoints] - find the critical points of an expression
Calling Sequence
CriticalPoints(f(x), x, opts)
CriticalPoints(f(x), x = a..b, opts)
CriticalPoints(f(x), a..b, opts)
Parameters
f(x)
-
algebraic expression in variable 'x'
x
name; specify the independent variable
a, b
algebraic expressions; specify restricted interval for critical points
opts
equation(s) of the form numeric=true or false; specify computation options
Description
The CriticalPoints(f(x), x) command returns all critical points of f(x) as a list of values.
The CriticalPoints(f(x), x = a..b) command returns all critical points of f(x) in the interval [a,b] as a list of values.
If the independent variable can be uniquely determined from the expression, the parameter x need not be included in the calling sequence.
A critical point is defined as any point at which the derivative is either zero or does not exist.
If the expression has an infinite number of critical points, a warning message and sample critical points are returned.
The opts argument can contain the following equation that sets computation options.
numeric = true or false
Whether to use numeric methods (using floating-point computations) to find the critical points of the expression. If this option is set to true, the points a and b must be finite and are set to and if they are not provided. By default, the value is false.
Examples
See Also
Student, Student[Calculus1], Student[Calculus1][Asymptotes], Student[Calculus1][CurveAnalysisTutor], Student[Calculus1][ExtremePoints], Student[Calculus1][FunctionChart], Student[Calculus1][InflectionPoints], Student[Calculus1][Roots]
Download Help Document