Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SNAP[EuclideanReduction] - compute the smallest degree pair of univariate polynomials by Euclidean-like unimodular reduction
Calling Sequence
EuclideanReduction(a, b, z, tau = eps, out)
Parameters
a, b
-
univariate numeric polynomials
z
name; indeterminate for a and b
tau = eps
(optional) equation where eps is of type numeric and non-negative; stability parameter
out
(optional) equation of the form output = obj where obj is 'UR' or a list containing one or more instances of this name; select result objects to compute
Description
The EuclideanReduction(a, b, z) command returns the last numerically well-conditioned basis accepted by the Coprime algorithm [2]. This corresponds to the smallest degree pair of polynomials in the sequence of numerically well-behaved polynomial remainders that can be obtained from (a,b) by unimodular reduction.
It thus provides the user with a pair of polynomials that generates the same ideal generated by (a,b) but with degrees that are, in general, much smaller. Furthermore, the highest degree component of such a reduced pair is a good candidate for an epsilon-GCD of (a,b).
The optional stability parameter tau can be set to any non-negative value eps to control the quality of the output. Decreasing eps yields a more reliable solution. Increasing eps reduces the degrees of the returned basis.
As specified by the out option, Maple returns an expression sequence containing the following:
* UR contains a 2 by 2 unimodular matrix polynomial U in z such that where (a', b') is the last basis accepted by the algorithm of [2].
Examples
See Also
SNAP[DistanceToCommonDivisors], SNAP[EpsilonGCD]
References
Beckermann, B., and Labahn, G. "A fast and numerically stable Euclidean-like algorithm for detecting relatively prime numerical polynomials." Journal of Symbolic Computation. Vol. 26, (1998): 691-714.
Beckermann, B., and Labahn, G. "When are two numerical polynomials relatively prime?" Journal of Symbolic Computation. Vol. 26, (1998): 677-689.
Download Help Document