Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
QDifferenceEquations[QMultiplicativeDecomposition] - construct the four minimal multiplicative decompositions of a q-hypergeometric term
Calling Sequence
QMultiplicativeDecomposition[1](H, q, n, k)
QMultiplicativeDecomposition[2](H, q, n, k)
QMultiplicativeDecomposition[3](H, q, n, k)
QMultiplicativeDecomposition[4](H, q, n, k)
Parameters
H
-
q-hypergeometric term in q^n
q
name used as the parameter q, usually q
n
variable
k
name
Description
Let H be a q-hypergeometric term in q^n. The QMultiplicativeDecomposition[i](H,q,n,k) command constructs the th minimal multiplicative decomposition of H of the form where are rational functions of q^n, and have minimal possible values, for .
Additionally, if then is minimal; if then is minimal; if then is minimal, and under this condition, is minimal; if then is minimal, and under this condition, is minimal.
If QMultiplicativeDecomposition is called without an index, the first minimal multiplicative decomposition is constructed.
Examples
See Also
QDifferenceEquations[QEfficientRepresentation], QDifferenceEquations[QObjects], QDifferenceEquations[QRationalCanonicalForm]
References
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Efficient Representations of (q-)Hypergeometric Terms and the Assignment Problem." Submitted.
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.
Download Help Document