Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Prem - inert pseudo-remainder function
Sprem - inert sparse pseudo-remainder function
Calling Sequence
Prem(a, b, x, 'm', 'q')
Sprem(a, b, x, 'm', 'q')
Parameters
a, b
-
multivariate polynomials in the variable x
x
indeterminate
m, q
(optional) unevaluated names
Description
The Prem and Sprem functions are placeholders for the pseudo-remainder and sparse pseudo-remainder of a divided by b where a and b are polynomials in the variable x. They are used in conjunction with either mod or evala which define the coefficient domain, as described below.
The function Prem returns the pseudo-remainder r such that:
where and m (the multiplier) is:
If the fourth argument is present it is assigned the value of the multiplier m defined above. If the fifth argument is present, it is assigned the pseudo-quotient q defined above.
The function Sprem has the same functionality as Prem except that the multiplier m will be to the power of the number of division steps performed rather than the degree difference. When Sprem can be used it is preferred because it is more efficient.
The calls Prem(a, b, x, 'm', 'q') mod p and Sprem(a, b, x, 'm', 'q') mod p compute the pseudo-remainder and sparse pseudo-remainder respectively of a divided by b modulo p, a prime integer. The coefficients of a and b must be multivariate polynomials over the rationals or coefficients over a finite field specified by RootOf expressions.
The calls evala(Prem(a, b, x, 'm', 'q')) and evala(Sprem(a, b, x, 'm', 'q')) compute the pseudo-remainder and sparse pseudo-remainder respectively of a and b, where the coefficients of a and b are multivariate polynomials with coefficients in an algebraic number (or function) field.
Examples
Prem uses a power of the leading coefficient to the degree difference for the multiplier
Sprem uses a smaller power of the leading coefficient for the multiplier
See Also
evala, mod, prem, Rem, RootOf, sprem
Download Help Document