Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PolynomialIdeals[Operators] - binary operators for ideals
Calling Sequence
J + K
J * K
J / K
J ^ n
f in J
J subset K
Simplify(J)
Parameters
J, K
-
polynomial ideals
n
positive integer
f
polynomial
Description
The Operators subpackage provides access to Add, Multiply, and Quotient as binary operators. An exponentiation operator, which uses binary powering on Multiply, is also provided. These operators are intended for interactive use with small examples.
Note: The `in` and `subset` operators are bound to the IdealMembership and IdealContainment routines when the PolynomialIdeals package is loaded. They are not part of the Operators subpackage.
The arithmetic operators accept ordinary expressions as well as ideals. Wherever an expression f is encountered, the operators construct <f> in an appropriate polynomial ring.
Unlike their respective commands in PolynomialIdeals, the arithmetic operators simplify their results to a canonical form using reduced Groebner bases. The Simplify command is also rebound so that it simplifies ideals to this same canonical form. The parent PolynomialIdeals package command behavior of Simplify can still be accessed through the long form PolynomialIdeals[Simplify].
Operator overloading and the simplification of ideals to a canonical form is often very expensive and may be impractical for problems of even a moderate size. In this case, don't use these operators. Use the Add, Multiply, and Quotient commands in the parent PolynomialIdeals package, and apply the Simplify command selectively.
These operators are part of the Operators subpackage, and can be used in their binary form only after executing with(PolynomialIdeals[Operators]), or inside a use statement.
Examples
See Also
PolynomialIdeals, PolynomialIdeals[Add], PolynomialIdeals[IdealContainment], PolynomialIdeals[IdealInfo], PolynomialIdeals[IdealMembership], PolynomialIdeals[Multiply], PolynomialIdeals[Quotient], PolynomialIdeals[Simplify]
Download Help Document