Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PolynomialIdeals[Add] - compute the sum of ideals
PolynomialIdeals[Multiply] - compute the product of ideals
PolynomialIdeals[Quotient] - compute the quotient of two ideals
Calling Sequence
Add(J, K, ..., options)
Multiply(J, K, ..., options)
Quotient(J, K, options)
Parameters
J, K
-
polynomial ideals, polynomials, or list or sets or polynomials
options
(optional) properties of the ideal and polynomial ring of the result
Description
The Add, Multiply, and Quotient commands compute ideal sums, products, and quotients respectively.
Let and be two polynomial ideals. The ideal sum is the ideal . The ideal product is the ideal . The ideal quotient is the set of all polynomials such that for all in .
Add and Multiply accept any number of arguments. The set of variables is extended to include the variables of each ideal. If the ideals cannot be put into a common polynomial ring, then an error is produced. Add and Multiply do not make any effort to simplify their results. The Simplify command can be used for this purpose.
The Quotient command accepts exactly two arguments. If both arguments are polynomial ideals, then the set of variables is extended to include the variables of both ideals. If one or more arguments are polynomials , then the Quotient command takes that to mean in an appropriate polynomial ring.
Examples
See Also
PolynomialIdeals, PolynomialIdeals[IdealInfo], PolynomialIdeals[Operators], PolynomialIdeals[PolynomialIdeal], PolynomialIdeals[Simplify]
Download Help Document