Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
OrthogonalSeries[DerivativeRepresentation] - take differential representation transform of a series
Calling Sequence
DerivativeRepresentation(S, x, optional_root)
DerivativeRepresentation(S, x1,.., xn, optional_root)
DerivativeRepresentation(S, [x1,.., xn], optional_root)
Parameters
S
-
orthogonal series
x, x1, .., xn
names
optional_root
(optional) equation of the form root = val where val is a symbol representing a root of the polynomial associated with the expansion family
Description
The DerivativeRepresentation(S, x) calling sequence returns a series equal to S written in terms of the family of polynomials produced by differentiating the S polynomials with respect to x.
The DerivativeRepresentation(S, x1,.., xn) and DerivativeRepresentation(S, [x1,.., xn]) calling sequences are equivalent to the recursive calling sequence DerivativeRepresentation(...DerivativeRepresentation(S, x1),..., xn).
The partial differential representation can be used for continuous hypergeometric polynomials with a degree 2 sigma polynomial. The partial differential representation (with respect to the root xi for the polynomials poly(n, x) depending on x in the series S) is obtained by using the DerivativeRepresentation(S, x, root=val) calling sequence. If val is not a root of the sigma associated with poly(n, x), an error message is returned. The DerivativeRepresentation(S, x1,.., xn, root=val) and DerivativeRepresentation(S, [x1,.., xn], root=val) calling sequences assume that all polynomials depending on x1,.., xn share the common root val. Otherwise, an error is returned.
Examples
Find the partial differential representation for Jacobi polynomials. In this case, sigma(x) = x^2-1.
Error, (in OrthogonalSeries:-DerivativeRepresentation) -2 is not a root of x^2-1
See Also
JacobiP, LaguerreL, OrthogonalSeries, OrthogonalSeries[Create]
Download Help Document