Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
MatrixPolynomialAlgebra[MatrixLCLM] - compute a least-common left multiple of 2 matrices of polynomials
MatrixPolynomialAlgebra[MatrixLCRM] - compute a least-common right multiple of 2 matrices of polynomials
Calling Sequence
MatrixLCLM(A, B, x)
MatrixLCRM(A, B, x)
Parameters
A
-
Matrix of polynomials
B
x
variable name of the polynomial domain
Description
The MatrixLCLM(A, B, x) command computes a least-common left multiple of two matrices of polynomials. Both input matrices of polynomials can be square or rectangular but must have the same number of columns. The entries are either univariate polynomials in x over the field of rational numbers Q, or rational expressions over Q, that is, univariate polynomials in x with coefficients in Q(a1,...,an).
The matrix of polynomials must have more rows than columns and full column rank.
The MatrixLCRM(A, B, x) command computes a least-common right multiple of two matrices of polynomials. The matrix of polynomials must have more columns than rows and full row rank.
The method is a fraction-free algorithm by Beckermann and Labahn that computes a matrix GCD using Mahler systems.
Examples
Left matrix LCMs:
Right matrix LCMs:
See Also
indets, Matrix, MatrixPolynomialAlgebra, MatrixPolynomialAlgebra[HermiteForm], MatrixPolynomialAlgebra[MahlerSystem], MatrixPolynomialAlgebra[MatrixGCRD], MatrixPolynomialAlgebra[PopovForm]
References
Beckermann, B., and Labahn, G. "Fraction-free Computation of Matrix Rational Interpolants and Matrix GCDs." SIAM Journal on Matrix Analysis and Applications, Vol. 22 No.1, (2000): 114-144.
Download Help Document