Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LinearAlgebra[Generic][SmithForm] - compute the Smith form of a Matrix
Calling Sequence
SmithForm[E](A)
SmithForm[E](A,output=out)
Parameters
E
-
the domain of computation, an Euclidean domain
A
m x n Matrix of values in E
out
one of S, U, or V, or a list containing one or more of these names
Description
SmithForm[E](A) returns the Smith Normal Form S of A which satisfies:
(1) S[i,j] = 0 if i<>j
(2) S[i,i] is unit normal in E (implies uniqueness)
(3) S[i,i] | S[i+1,i+1] for all 1<=i<min(m,n)
(4) prod(S[i,i],i=1..d) = u*gcd(all minors of A of dimension d) where u is a unit
(5) S[i,i] = 0 for r < i <= min(m,n) where r is the rank of A
The (indexed) parameter E, which specifies the domain of computation, a Euclidean domain, must be a Maple table/module which has the following values/exports:
E[`0`]: a constant for the zero of the ring E
E[`1`]: a constant for the (multiplicative) identity of E
E[`+`]: a procedure for adding elements of E (nary)
E[`-`]: a procedure for negating and subtracting elements of E (unary and binary)
E[`*`]: a procedure for multiplying two elements of E (commutative)
E[`=`]: a boolean procedure for testing if two elements in F are equal
E[Quo]: a procedure which computes the quotient of a / b. E[Quo](a,b,'r') computes the quotient q of a / b and optionally assigns r the remainder satisfying a = b q + r.
E[Rem]: a procedure for finding the remainder of a / b. E[Rem(a,b,'q') computes the remainder r of a / b and optionally assigns q the quotient satisfying a = b q + r.
E[Gcdex]: a procedure for finding the gcd g of a and b, an element of E. E[Gcdex](a,b,'s','t') computes the gcd of a and b and optionally assigns s and t elements of E satisfying s a + t b = g.
E[UnitPart]: a procedure for returning the unit part of an element in E
E[EuclideanNorm]: a procedure for computing the Euclidean norm of an element in E, a non-negative integer. For non-zero a,b in E, units u,v in E, the Euclidean norm satisfies
EuclideanNorm(a b) >= EuclideanNorm(a)
EuclideanNorm(u) = EuclideanNorm(v)
EuclideanNorm(u a) = EuclideanNorm(a)
The Smith form is computed by first computing H the Hermite form of A, then computing the Hermite form of the transpose of H. If the resulting matrix is not diagonal, often it is, then the above sequence of computations is repeated, usually once, until it is.
Examples
See Also
Euclidean Norm, LinearAlgebra[Generic], LinearAlgebra[Generic][HermiteForm], LinearAlgebra[SmithForm]
Download Help Document