Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LREtools[dispersion] - compute dispersion of two polynomials
LREtools[autodispersion] - compute self-dispersion of a polynomial
Calling Sequence
dispersion(p1, p2, n)
dispersion(p1, p2, n, 'maximal')
autodispersion(p1, n)
Parameters
p1, p2
-
polynomials in n with any coefficient type
n
indeterminate
Description
dispersion computes the set of non-negative integers i such that . If there are no such integers, the function returns FAIL. Effectively, the dispersion measures the integers that can be added to the indeterminate in p1 and get a polynomial that has a common factor with p2.
If any of the polynomials contain parameters, then the returned answer is the generic dispersion, in other words the dispersion of the polynomials obtained by replacing the parameters by random numbers. As such, the answer returned will be subject to specialization problems.
The optional argument 'maximal' can be used to indicate that only the maximal dispersion is wanted. Returns FAIL if there are no such integers.
autodispersion computes dispersion(p1, subs(var=var-1, p1), n). This function is provided as this quantity can be computed more efficiently than the equivalent call to dispersion.
This notion originated in the works of Abramov. The algorithm used is based on the work of Yiu-Kwong Man and Francis J. Wright. (See References).
Examples
See Also
factors, gcd, LREtools, resultant, roots
References
Abramov, S.A.. "On the summation of rational functions." USSR Comp. Math. Phys. 11. (1971): 324-330.
Abramov, S.A.. "Rational solutions of linear differential and difference equations with polynomial coefficients." USSR Comp. Math. Phys. 29. (1989): 7-12.
Man, Yiu-Kwong, and Wright, Francis J. "Fast Polynomial Dispersion Computation and its Application to Indefinite Summation." Proceedings of ISSAC '94: 175-180
Download Help Document