Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
IntegerRelations[PSLQ] - find an integer dependence (relation)
Calling Sequence
PSLQ(v)
Parameters
v
-
list or Vector of (complex) floating-point numbers
Description
Given a list (or a Vector) v of real numbers, the PSLQ(v) command outputs a list (or a Vector) u of integers such that is minimized. Thus the PSLQ function finds an integer relation between a vector of linearly dependent real numbers if the input has enough precision.
Given a list (or a Vector) v of complex numbers, the PSLQ(v) command outputs a list (or a vector) u of complex integers (Gaussian integers) such that the norm of is minimized.
This is an implementation of Bailey and Ferguson's PSLQ algorithm. You can also use the Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm to find a linear relation. For more information, see IntegerRelations[LLL]. Generally speaking, PSLQ is faster.
One application of PSLQ is to find the minimal polynomial of an algebraic number given a decimal approximation of the algebraic number. The examples below illustrate this. Generally speaking, if the height of the minimal polynomial is and its degree is , then you need more than correct decimal digits for the algebraic number. If the input has digits and this is insufficient, the output of PSLQ will typically be a list of integers each with approximately / digits long.
Examples
Check that the following linear combination is small.
Finding a integer relation between non-algebraic constants.
Using PSLQ to find the minimal polynomial for .
Approximate with digits and round to digits.
The minimal polynomial for
Check that is a root of
The next example involves complex numbers. First define a tenth root of unity.
In the next example, a Gaussian integer relation is found. We subsequently find an integer relation from the Gaussian integer relation by eliminating I.
The last example is of much larger degree requiring more than the default digits of precision. In the example, we are using PSLQ to test if the algebraic number is of degree or less.
Compute to digits and round to digits.
Check.
Thus, the minimal polynomial for must be the degree 9 factor.
Here is what happens if we mistakenly assume that algebraic number is of degree or less. The output of PSLQ looks like random digit integers, which indicates that it has not found anything interesting.
See Also
identify, IntegerRelations, IntegerRelations[LinearDependency], IntegerRelations[LLL]
Download Help Document