Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Hermite - compute the Hermite Normal Form of a matrix mod p
Smith - compute the Smith Normal Form of a matrix mod p
Calling Sequence
Hermite(A, x)
Hermite(A, x, U)
Smith(A, x, U, V)
Parameters
A
-
rectangular matrix of univariate polynomials in x
x
name
U
V
Description
Hermite and Smith are placeholders for representing the Hermite and Smith Normal Forms respectively. They are used in conjunction with mod as is described below.
Hermite(A, x) mod p computes the Hermite Normal Form (reduced row echelon form) of an m by n rectangular matrix of univariate polynomials in x over the integers modulo p. The polynomial coefficients must be rational or elements of a finite extension field specified by RootOfs. In the case of three arguments, the third argument, U, will be assigned the transformation matrix upon completion, such that Hermite(A) = U &* A.
Smith(A, x) mod p computes the Smith Normal Form of a matrix with univariate polynomial entries in x over the integers modulo p. The coefficients of the polynomial must be either rational or elements of a finite extension field specified by RootOfs. In the case of four arguments, the third argument U and the fourth argument V will be assigned the transformation matrices on output, such that Smith(A) = U &* A &* V.
Examples
To obtain the column form for the HNF of A do
See Also
LinearAlgebra[HermiteForm], LinearAlgebra[Modular], LinearAlgebra[SmithForm], RootOf
Download Help Document