Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
FunctionAdvisor/singularities - return the poles and essential singularities of a given mathematical function
Calling Sequence
FunctionAdvisor(singularities, math_function)
Parameters
singularities
-
literal name; 'singularities'
math_function
Maple name of mathematical function
Description
The FunctionAdvisor(singularities, math_function) command returns the isolated poles and essential singularities of the function, if any, or the string "No isolated singularities". If the requested information is not available, it returns NULL.
A singularity of at is isolated when is discontinuous at but it is analytic in the neighborhood of . To compute the branch points of a mathematical function, that is, the non-isolated singularities related to the multivaluedness of the function, use the FunctionAdvisor(branch_point, math_function) command.
An isolated singularity can be removable, essential, or a pole. In the call FunctionAdvisor(singularities, math_func) only poles and essential singularities are returned.
An isolated singularity of at is removable when there exists a function such that for and is analytic at . The singularity is a pole when and both are analytic at and . The singularity is essential when it is neither removable nor a pole.
The following are examples of these types of isolated singularities
f1(z) = piecewise(z <> 2, sin(z), z = 2, 0);
f2(z) = 1/(z-3);
f3(z) = exp(1/z);
where has a removable singularity at , has a pole , and has an essential singularity at .
Examples
The value of the function at its singularities can typically be checked by direct evaluation or using eval.
See Also
DEtools[singularities], eval, FunctionAdvisor, FunctionAdvisor/branch_cuts, FunctionAdvisor/branch_points, FunctionAdvisor/topics, singular
References
Brown, J.W. and Churchill, R.V. Complex Variables and Applications. 6th Ed. McGraw-Hill Science/Engineering/Math, 1995.
Download Help Document