Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
FunctionAdvisor/DE - return the differential equation form of a given mathematical function
Calling Sequence
FunctionAdvisor(DE, math_function, var)
Parameters
DE
-
name where DE is one of the literal names 'DE', 'ODE', or 'PDE'
math_function
Maple name of mathematical function
var
optional, a list of independent variable(s) or the main dependent variable
Description
The FunctionAdvisor(DE, math_function) command returns an all polynomial differential equation system satisfied by the function, when it exists.
A differential equation system is polynomial when it is polynomial in the independent variables, unknown functions, and its derivatives. For more information, see dpolyform.
Examples
Note that 'ODE' and 'PDE' are synonyms for 'DE'.
The variables used by the FunctionAdvisor command to create the calling sequence are local variables. Therefore, the previous examples does not depend on z.
To make the FunctionAdvisor command return results using global variables, pass the actual function call instead of the function name. In this case, for some special functions it is also necessary to indicate which variables are the "differential equation independent variables". For examples, consider the following.
Moreover, in the case of the DE topic, the arguments in the function call need not be a name, in which case the differential equation system for the composed function call given is computed. Compare the differential equation for JacobiTheta1 above and this other one taking as argument
Apart from optionally passing a list of independent variables, one can pass the dependent variable directly (it includes the information on the independent variables):
See Also
depends, FunctionAdvisor, FunctionAdvisor/differentiation_rule, FunctionAdvisor/topics, PDEtools/dpolyform
Download Help Document