Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Finance[LocalVolatility] - compute the local volatilities given option prices
Calling Sequence
LocalVolatility(C, S, T, r, d, t, K)
Parameters
C
-
algebraic expression or a procedure; price of a European call option
S
list or Vector; values of the underlying asset
T
list or Vector; time (in years)
r
non-negative constant, algebraic expression or a yield term structure; risk-free rate
d
non-negative constant, algebraic expression or a yield term structure; dividend yield
t
name; variable representing time to maturity
K
name; variable representing the strike price
Description
The LocalVolatility command computes local volatilities of the underlying asset implied by the specified prices of European call options. It is assumed that the underlying asset evolves according to the stochastic differential equation
where
is the risk-free rate,
is the dividend yield,
is the local volatility,
and
is the standard Wiener process.
Note that the local volatility is a function of both time and the value of the underlying asset.
Let denote the undiscounted price of the European call option with strike price K and maturity time t drawn on the underlying asset. If P(t, K) is known for all and , then the local volatility sigma(S, t) of the underlying asset can be determined using the following equation:
The parameter C is the discounted price of the European call option given as a function of the maturity time t and the strike price K.
The parameter S specifies values of the underlying asset for which local volatilities are to be computed. The parameter T specifies times for which local volatilities are to be computed. The LocalVolatility command returns a matrix V such that is the local volatility of the underlying asset at time when the value of the underlying asset is .
The r and d parameters are the risk-free rate and the dividend yield. These parameters can be given in either the algebraic form or the operator form. If any of the parameters C, r, or d are given in the algebraic form, the parameters t and K must be specified to determine which variable represents time and which variable represents the strike price.
Compatibility
The Finance[LocalVolatility] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
Examples
First you obtain a symbolic expression for the local volatility in terms of time and underlying value.
Alternatively, you can compute values of the local volatility for any given value of S and T.
See Also
Finance[AmericanOption], Finance[BarrierOption], Finance[BlackScholesDelta], Finance[BlackScholesGamma], Finance[BlackScholesPrice], Finance[BlackScholesRho], Finance[BlackScholesTheta], Finance[BlackScholesVega], Finance[EuropeanOption], Finance[LatticePrice], Finance[LocalVolatility]
References
Gatheral, J., The Volatility Surface: A Practioner's Guide, (with foreword by Nassim Taleb), Wiley, 2006.
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
Download Help Document