Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Tensor[WeylTensor] - calculate the Weyl curvature tensor of a metric
Calling Sequences
WeylTensor(g, R)
Parameters
g - a metric on a manifold M
R - (optional) the curvature tensor of the metric g, as computed from the Christoffel symbols of g
Description
Let R_{ijhk} be the rank 4 contravariant tensor obtained from the curvature tensor of g by lowering its first index with the metric g. Let R_{ih} be the Ricci tensor and R the Ricci scalar. Then the trace-free part of R_{ijhk} is the Weyl tensor W of the metric g. If the dimension of M is n, then in components
W_{ijhk} = R_{ijhk} - 1/(n - 2)*(g_{ih} R_{jk} - g_{jh} R_{ik} - g_{ik} R_{jh} + g_{jk} R_{ih}) + 1/(n - 1)(n - 2)*(g_{ih} g_{jk} - g_{jh} g_{ik})*R.
The Weyl tensor vanishes identically in dimension n = 3. If g' = f*g, then W(g') = f*W(g).
In addition to being trace-free over any index pair, the Weyl tensor also satisfies the first Bianchi identity.
This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form WeylTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-WeylTensor.
Examples
Example 1.
First create a 3 dimensional manifold M and show that the Weyl tensor of a randomly defined metric g1 is zero.
Calculate the Christoffel symbols.
Calculate the curvature tensor.
Calculate the Weyl tensor.
Example 3.
Define a 4 dimensional manifold and a metric g2.
Calculate the Weyl tensor directly from the metric g2
We check the various properties of the Weyl tensor. First we check that it is skew-symmetric in its 1st and 2nd indices, and also in its 3rd and 4th indices.
Check the 1st Bianchi identity.
Check that W2 is trace-free on the indices 1 and 3.
Finally we check the conformal invariance of the Weyl tensor by computing the Weyl tensor W3 for g3 = f(y, z)*g2 and comparing W3 with f(y, z)*W2
See Also
DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], ContractIndices, CurvatureTensor, Physics[Riemann], InverseMetric, Physics[g_], SymmetrizeIndices
Download Help Document