Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
LieAlgebras[CartanMatrix] - find the Cartan matrix for a simple Lie algebra from a root space decomposition, display the Cartan matrix for a given root type
Calling Sequences
CartanMatrix()
Parameters
SR - a list of column vectors, defining the simple roots of a simple Lie algebra
RSD - a table, defining the root space decomposition of an initialized Lie algebra
RT - a string, the root type of a simple Lie algebra "A", "B", "C", "D", "E", "F", "G"
m - a positive integer, the dimension of the Cartan matrix
Description
Let g be a simple Lie algebra, h a Cartan subalgebra, and the root space decomposition of g with respect to h. Let <$,$> be the Killing form of g. For each root , there are vectors and such that and These conditions uniquely determine The vector can be computed using the command RootToCartanSubalgebraElementH.
Let be a set of simple roots for g. Then the associated Cartan matrix is the matrix with entries < , / <, >. The entries of the Cartan matrix are 0, 1, -1 or 2. The Cartan matrix is independent of the choice of Cartan subalgebra h but is dependent upon the ordering of the simple roots in
The Cartan matrix is the fundamental invariant for semi-simple Lie algebras over C -- two complex semi-simple Lie algebras are isomophic if and only if their Cartan matrices are the same, modulo a permutation of the vectors in the Cartan subalgebra. The command CartanMatrixToStandardForm will transform a given Cartan matrix to a standard form.
The Cartan matrix encodes the re-construction of the root system of the Lie algebra from its simple roots. See PositiveRoots .
The information contained in the Cartan matrix is also encoded in the Dynkin diagram of the Lie algebra.
The first calling sequence calculates the Cartan matrix of a Lie algebra from a set of simple roots and a root space decomposition.
The second calling sequence displays the standard form of the Cartan matrix for each possible root type of a simple Lie algebra.
Examples
Example 1.
We use the command SimpleLieAlgebraData to obtain the Lie algebra data for the Lie algebra . This is the 15-dimensional Lie algebra of trace-free, skew-Hermitian matrices
We surpress the output of this command which is a lengthy list of structure equations.
Initialize this Lie algebra -- the basis elements are given the default labels
We remark that the command StandardRepresentation can be used to explicitly display the matrices defining .
The first 3 matrices define a Cartan subalgebra. We can use the Query command to check this
We use the command RootSpaceDecomposition to find the root space decomposition for with respect to this Cartan subalgebra.
A choice of simple roots for this root space decomposition is:
This set of simple roots can be determined by the command SimpleRoots. The Cartan matrix for this root space decomposition and choice of simple roots is :
We easily identify this as the standard Cartan matrix for
Notice that a permutation of the simple roots gives a permuted Cartan matrix.
Example 2.
For the exceptional Lie algebras , and there are two different conventions for the Cartan matrix. For these are:
See Also
DifferentialGeometry, DynkinDiagram, CartanSubalgebra, LieAlgebras, RootSpaceDecomposition, SimpleRoots
Download Help Document