Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialAlgebra[Tools][LeadingRank] - returns the leading rank of a differential polynomial
Calling Sequence
LeadingRank(ideal, opts)
LeadingRank(p, R, opts)
LeadingRank(L, R, opts)
Parameters
ideal
-
a differential ideal
p
a differential polynomial
L
a list or a set of differential polynomials
R
a differential polynomial ring or ideal
opts (optional)
a sequence of options
Description
The function call LeadingRank(p,R) returns the leading rank of p with respect to the ranking of R, or of its embedding ring, if R is an ideal.
The function is extended to numeric polynomials: the leading rank of is . The leading rank of any nonzero numerical polynomial is . It is also extended to differential polynomials which involve independent variables only.
The function call LeadingRank(L,R) returns the list or the set of the leading ranks of the elements of L with respect to the ranking of R.
If ideal is a regular differential chain, the function call LeadingRank(ideal) returns the list of the leading ranks of the chain elements. If ideal is a list of regular differential chains, the function call LeadingRank(ideal) returns a list of lists of leading ranks.
This command is part of the DifferentialAlgebra:-Tools package. It can be called using the form LeadingRank(...) after executing the command with(DifferentialAlgebra:-Tools). It can also be directly called using the form DifferentialAlgebra[Tools][LeadingRank](...).
Options
The opts arguments may contain one or more of the options below.
fullset = boolean. In the case of the function call LeadingRank(ideal), applies the function also over the differential polynomials which state that the derivatives of the parameters are zero. Default value is false. This option is incompatible with the diff notation.
notation = jet, tjet, diff or Diff. Specifies the notation used for the result of the function call. If not specified, the notation of the first argument is used.
memout = nonnegative. Specifies a memory limit, in MB, for the computation. Default is zero (no memory out).
Examples
See Also
DifferentialAlgebra, LeadingDerivative
Download Help Document