Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[Zeilberger] - perform Zeilberger's algorithm (differential case)
Calling Sequence
Zeilberger(F, x, y, Dx)
Zeilberger(F, x, y, Dx, 'gosper_free')
Parameters
F
-
hyperexponential function in x and y
x
name
y
Dx
name; denote the differential operator with respect to x
Description
For a specified hyperexponential function of x and y, the Zeilberger(F, x, y, Dx) calling sequence constructs for a Z-pair that consists of a linear differential operator with coefficients that are polynomials of x over the complex number field
and a hyperexponential function of x and y such that
Dx and Dy are the differential operators with respect to x, and y, respectively, defined by , and .
By assigning values to the global variables _MINORDER and _MAXORDER, the algorithm is restricted to finding a Z-pair for such that the order of L is between _MINORDER and _MAXORDER.
The algorithm has two implementations. The default implementation uses a variant of Gosper's algorithm, and another one is based on the universal denominators. With the 'gosper_free' option, Gosper-free implementation is used.
The output from the Zeilberger command is a list of two elements representing the computed Z-pair .
Examples
See Also
SumTools[Hypergeometric][Zeilberger]
References
Almkvist, G, and Zeilberger, D. "The method of differentiating under the integral sign." Journal of Symbolic Computation. Vol. 10. (1990): 571-591.
Download Help Document