Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[MeijerGsols] - solutions of a Meijer G type of linear ode
Calling Sequence
MeijerGsols(lode,v)
MeijerGsols(coeff_list,x)
Parameters
lode
-
homogeneous linear differential equation
v
dependent variable of the lode
coeff_list
list of coefficients of a linear ode
x
independent variable of the lode
Description
The MeijerGsols routine returns a basis of the space of solutions of a linear differential equation of Meijer G type.
The classical notation used to represent the MeijerG function relates to the notation used in Maple by
Note: See Prudnikov, Brychkov, and Marichev.
The MeijerG function satisfies the following qth-order linear differential equation
where and is less than or equal to q.
For example, MeijerG( [[a[1]],[a[p]]], [[b[1]],[b[q]]], x ) satisfies:
PDEtools[declare](y(x), prime=x);
DEtools[hyperode]( MeijerG( [[a[1]],[a[p]]], [[b[1]],[b[q]]], x ), y(x) ) = 0;
For information about making symbolic experiments with expressions that contain the MeijerG function of different arguments and the differential equation the expression satisfies, see dpolyform.
MeijerGsols accepts two calling sequences. The first argument of the first calling sequence is a linear differential equation in diff or form, and the second argument is the function in the differential equation.
The first argument in the second calling sequence is the list of coefficients of a linear ode, and the second is the independent variable. This calling sequence can be convenient for programming with the MeijerGsols routine.
This function is part of the DEtools package, and so it can be used in the form MeijerGsols(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[MeijerGsols](..).
Examples
These routines for tackling MeijerG type linear ODEs can also be used directly from Maple's dsolve via
See Also
D, DEtools, diff, dpolyform, dsolve, hyperode
References
Prudnikov, A. P.; Brychkov, Yu; and Marichev, O. Integrals and Series. Gordon and Breach Science, 1990. Vol. 3: More Special Functions.
Download Help Document