Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Berlekamp - distinct degree factorization
Calling Sequence
Berlekamp(a, x) mod p
Berlekamp(a, x, K) mod p
Parameters
a
-
univariate polynomial in x
x
name
K
a RootOf
p
prime integer
Description
This function computes the factorization of a monic square-free univariate polynomial over a finite field GF(p^k) using Berlekamp's algorithm. The factorization is returned as a set of irreducible factors. It is an alternative to the Cantor Zassenhaus distinct degree algorithm which is used by the Factor command. It is more efficient when p is large and the polynomial is irreducible or has only a few factors.
If the user wants to factor a polynomial which is not monic and square-free, i.e. the leading coefficient is not 1, or there are repeated factors, then the user should apply the Sqrfree function first. Note, the condition that a polynomial be square-free is .
The optional argument K specifies an extension field over which the factorization is to be done. See Factor for further information. Note: Only the case of a single field extension is implemented.
The algorithm used is known as Big Prime Berlekamp because its complexity is good also for large primes. For the case where the input polynomial is irreducible, the running time of the algorithm is arithmetic operations in GF(p^k). This is better than the Cantor Zassenhaus distinct degree algorithm. However, if the polynomial factors into many factors, these factors must be split using a probabilistic method. The running time increases to be in the average case.
The implementation uses Maple library code to do the linear algebra. This is not very efficient for GF(p) where p is small. The overhead of the Maple interpreter becomes small at about or in the case of an extension field.
Examples
See Also
DistDeg, Factor, Factors, RootOf, Sqrfree
References
Berlekamp, E.R. "Factoring Polynomials over Large Finite Fields." Mathematics of Computation. 1970. Vol. 24.
Geddes, K.O.; Czapor, S.R.; and Labahn, G. Algorithms for Computer Algebra. Kluwer Academic Publishers, 1992.
Monagan, M.B. "von zur Gathen's Factorization Challenge." ACM SIGSAM Bulletin, (April 1993): 13-18.
Download Help Document